Drug discovery and cell therapy in cardiovascular diseases





Dr. Motterlini’s laboratory has a long-standing interest in the biological significance of heme oxygenase-1 (HO-1), a ubiquitous defensive protein that degrades heme to carbon monoxide (CO), biliverdin and bilirubin (see Figure 1).


Together with Dr. Roberta Foresti, their team has extensively contributed to understand how HO-1 and endogenous bilirubin and CO render vascular and cardiac tissues more resistant to oxidative stress and injury.


Within the frame of our research strategies, we have also worked extensively on the identification of small molecules that specifically target the HO-1/CO pathway for the implementation of new pharmacological approaches to treat cardiac disorders and inflammation.


Notably, this work led to the pioneering discovery and characterization of CO-releasing molecules (CO-RMs), compounds that deliver controlled amounts of CO to tissues (see Figure 2).








Several studies by our group, which have been corroborated by other laboratories, have confirmed that CO-RMs are pharmacologically active by exerting vasodilatory, anti-ischemic, anti-inflammatory and bactericidal effects in vitro and in animal models of disease.


As the intracellular target(s) of CO remains elusive, part of our research plan is now to investigate the mechanism of action of CO with particular emphasis on the effect of CO-RMs on redox signaling and mitochondrial bioenergetics and their anti-inflammatory action.


In parallel, we are also working on the design and synthesis of effective small molecules that induce HO-1 by targeting the transcription factor Nrf2 which controls HO-1 gene expression (see Figure 2). This is based on our original findings that curcumin and other natural compounds strongly induce HO-1 protein expression and activity via transcriptional regulation of Nrf2.


The recent synthesis of “HYCOs”, novel hybrid molecules able to activate the Nrf2/HO-1 axis and simultaneously release CO, is an example of our drug discovery approach. As part of these projects, which are conducted in collaboration with a chemistry group (Dr. Michael Rivard), the team aims to investigate in depth the mechanism(s) of action by which HO-1 and CO exert its pharmacological effects by modulating mitochondrial function, metabolism and inflammation.


The team is also investigating approaches that combine the use of CO-RMs and HYCOs with stem cell technologies (see Figure 2).









Dr. Motterlini’s laboratory embraces a multidisciplinary approach comprising chemistry, biochemistry, pharmacology and cell biology. Several national and international collaborations and a continuous exchange of students and research fellows enable the team to progress and consolidate its research objectives.


Dynamic and enthusiastic candidates interested in joining the team are strongly encouraged to contact us also for preparation of joint grant applications and fellowships. Applications should include a cover letter stating scientific interests, a CV and names and addresses of at least two referees. Please contact: Dr. Roberto Motterlini (roberto.motterlini@inserm.fr) or Dr. Roberta Foresti (roberta.foresti@inserm.fr).


Selected publications

Motterlini R and Foresti R. Biological signaling of carbon monoxide and carbon monoxide-releasing molecules (CO-RMs).

Am J Physiol Cell Physiol. 2017 Mar 1;312(3):C302-C313

Wilson JL, Bouillaud F, Almeida AS, Vieira HL, Ouidja MO, Dubois-Randé JL, Foresti R Motterlini R. Carbon monoxide reverses the metabolic adaptation of microglia cells to an inflammatory stimulus.

Free Radic Biol Med. 2017 Mar;104:311-323.

Kaczara P, Motterlini R, Kuś K, Zakrzewska A, Abramov AY, Chłopicki S. Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells.

FEBS Lett. 590:3469-3480, 2016

Otterbein LE, Foresti R. and Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between dangerous signals and pro-survival.

Circ. Res., 118:1940-1959, 2016

Nikam A, Ollivier A, Rivard M, Wilson JL, Mebarki K, Martens T, Dubois-Randé JL, Motterlini R, Foresti R. Diverse Nrf2 Activators Coordinated to Cobalt Carbonyls Induce Heme Oxygenase-1 and Release CO in vitro and in vivo.

J. Med. Chem. 59:756-762, 2016

Fayad-Kobeissi S, Ratovonantenaina J, Dabiré H, Wilson JL, Rodriguez AM, Berdeaux A, Dubois-Randé JL, Mann BE, Motterlini R and Foresti R. Vascular and angiogenic activities of CORM-401, an oxidant-sensitive CO-releasing molecule.

Biochem. Pharmacol. 102:64-77, 2016

Foresti R, Bucolo C, Platania CMB, Drago F, Dubois-Randé JL, Motterlini R. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions.

Pharmacol. Res. 2015 Sep;99:296-307.

Kaczara P, Motterlini R, Rosen GM, Augustynek B, Bednarczyk P, Szewczyk A, Foresti R, Chlopicki S. Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: a role for mitoBKCa channels.

Biochim. Biophys. Acta 2015 Oct;1847:1297-1309.

Haas B, Fayad Kobeissi S, Chrusciel S, Dubois-Randé JL, Boczkowski J, Motterlini R and Foresti R. Permanent culture of macrophages at physiological oxygen attenuates the antioxidant and immunomodulatory properties of dimethyl fumarate.

J Cell Physiol. 2015 May;230(5):1128-38.

Figeac F, Dagouassat M, Mus-Veteau I, Mahrouf-Yorgov M, Le Gouvello S, Trebeau C, Sayed A, Stern JB, Validire P, Dubois-Randé JL, Boczkowski J, Rodriguez AM. Lung fibroblasts share mesenchymal stem cell features which are altered in Chronic Obstructive Pumonary Disease via the overactivation of the Hedgehog signaling pathway.

PLoS One. 2015 Mar 27;10(3):e0121579.

Wilson JL, Fayad Kobeissi S, Oudir S, Haas B, Michel BW, Dubois-Randé JL, Ollivier A, Martens T, Rivard M, Motterlini R and Foresti R. Design and synthesis of novel hybrid molecules that activate the transcription factor Nrf2 and simultaneously release carbon monoxide.

Chemistry. 2014 Nov 3;20(45):14698-704.

Motterlini R and Foresti R. Heme oxygenase-1 as a target for drug discovery.

Antioxid Redox Signal. 2014 Apr 10;20(11):1810-26.

Foresti R, Bains SK, Pitchumony TS, de Castro Brás LE, Drago F, Dubois-Randé JL, Bucolo C, Motterlini R. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

Pharmacol Res. 2013 Oct;76:132-48.

Yabluchanskiy A, Sawle P, Homer-Vanniasinkam S, Green CJ, Foresti R and Motterlini R. CORM-3, a carbon monoxide-releasing molecule, alters the inflammatory response and reduces brain damage in a rat model of hemorrhagic stroke.

Crit Care Med. 2012 Feb;40(2):544-52.

Desmard M, Foresti R, Morin D, Denamur E, Crook S, Mann BE, Scapens D, Montravers P, Boczkowski J and Motterlini R. Differential antibacterial activity against Pseudomonas aeruginosa by carbon monoxide-releasing molecules (CO-RMs).

Antioxid Redox Signal. 2012 Jan 15;16(2):153-63.

Motterlini R and Otterbein LE. The therapeutic potential of carbon monoxide.

Nat Rev Drug Discov. 2010 Sep;9(9):728-43.